集寧PVPK30批發
又可分為鹵代法、乙酐法等.先是羥乙基吡咯烷酮在溶劑苯中與SOCl,發生鹵代反應生成氯乙基吡咯烷酮,然后用KOH或甲醇鈉作催化劑脫去一分子氯化氫生成NVP,反應的實施過程如下:( 1 )NHP和苯按重量比1:0.5~0.8加人三頸燒瓶中,再把燒瓶置于加有冰塊的超級恒水浴中,邊攪拌,邊由滴液漏斗滴加入重量為NHPO.83倍的SOCl,控制速度使體系溫度不大于35℃為宜(因為羥乙基吡咯烷酮與SOCl。
再經高壓液相氨化或氣相催化胺化合成2-吡咯烷酮這種方法要簡單易行.德國專利IDE-A-2200600采用負載鈀催化劑在275℃,120bar的溫度和壓力下對順酐與氨水的混合溶液加氫,得到了收率為78%的2-吡咯烷酮.其他常用的加氫催化劑如負載型鎳﹑鉑催化劑或骨架鎳都可用于順酐/氨水混合物系的催化加氫反應.美國專利US5,101,045公開了-種由多種金屬組成的復合催化劑Co(52.7%)--Cu(15.3%)-Mn(5.1%)-Mo(2.1%)-P(1.1%)-Na(0.1%),
之間的反應為強放熱反應),滴加完畢后繼續攪拌4h,此時NHP的轉化率已達90%以上,將反應裝置接到SO吸收系統上,以除去反應副產物SO,,待SO被完全吸收后,在75~80℃下常壓蒸餾出溶劑苯,然后在真空度0.09MPa下減壓蒸餾出氯乙基吡咯烷酮.
二是因為醇比水容易揮發.以甲醇鈉為例,在鹵代反應中,氯化亞飆一直被認為是傳統的鹵代劑.我們探討了鹽酸作為鹵代劑的情況,研究結果表明,鹽酸作為羥乙基吡咯烷酮鹵代反應的鹵代劑具有其明顯的技術和經濟優勢.鹽酸作為鹵代劑同樣是經過兩步得到產物NVP,其中-步反應為:二步與SOCl。作為鹵代劑時相同.鹽酸作為鹵代劑的實施過程與SOCl2作為鹵代劑時大致相同,只是在實施一步反應時有以下幾點值得注意:(1)不需要加入溶劑;(2)鹽酸過量約20%;(3)反應溫度為130℃左右,不需要冷卻;
(2〉將氯乙基吡咯烷酮、溶劑苯和作為催化劑的 KOH或醇鈉按比例(氯乙基吡咯烷酮:苯=3∶1)加入三頸燒瓶中,KOH加入量為氯乙基吡咯烷酮的10%(mol).在攪拌下加熱升溫至65℃,維持溫度65土5℃攪拌回流反應3h停止反應,在65~90℃下常壓蒸餾出溶劑苯,在0.09MPa真空度下減壓蒸餾出產物NVP,未反應的氯乙基吡咯烷酮返回再進行反應.
集寧PVPK30批發
作者的大量研究結果表明,使用醇鈉(甲醇鈉、乙醇鈉等)作為氯乙基吡咯烷酮消除反應的催化劑效果明顯比使用KOH效果好,而且醇鈉的用量遠遠小于KOH,這可能是因為KOH與氯乙基吡咯烷酮反應除生成KCl,還有副產物H,O,不利于反應的順利進行.
是采用乙酸酐先與羥乙基吡咯烷酮反應生成吡咯烷酮的乙酸酯,然后脫去一分子乙酸即得NVP.方法(3)是直接使羥乙基吡咯烷酮進行催化脫水反應生成NVP.三種方法各有利弊,(1)和(2)的優點是反應易于進行,轉化率高,脫HCl,脫乙酸比脫水反應容易,但反應路線長,需加入另一種輔助原料,如SOCl,HCl或AczO,增大了成本及設備投資,且SOCl2,HCI分別有劇毒性及腐蝕性,易帶來環境污染問題和設備腐蝕問題等.
而使用醇鈉時生成的副產物醇對反應影響比HO小,一是因為產生醇的量比HO少,二是因為醇比水容易揮發.以甲醇鈉為例,在鹵代反應中,氯化亞飆一直被認為是傳統的鹵代劑.
反應在150~170℃,2MPa的條件下進行,產品NVP收率在70%~80%.在傳統的Reppe工藝中,從乙炔到Y-丁內酯需經歷三步反應即醇解﹑加氫﹑脫氫,還需加入甲醛作為另一反應物.近年來隨著順酐生產技術的發展和成熟,y-丁內酯的生產工藝已得到明顯改進.例如采用苯或正丁烷為原料,通過催化氧化(V-P-O系催化劑)得順酐,順酐加氫即得到y-丁內酯.因此,在新開發的NVP合成技術中,大多是以Y-丁內酯為起始原料來進行的.
在65~90℃下常壓蒸餾出溶劑苯,在0.09MPa真空度下減壓蒸餾出產物NVP,未反應的氯乙基吡咯烷酮返回再進行反應.作者的大量研究結果表明,使用醇鈉(甲醇鈉、乙醇鈉等)作為氯乙基吡咯烷酮消除反應的催化劑效果明顯比使用KOH效果好,而且醇鈉的用量遠遠小于KOH,這可能是因為KOH與氯乙基吡咯烷酮反應除生成KCl,還有副產物H,O,不利于反應的順利進行.而使用醇鈉時生成的副產物醇對反應影響比HO小,一是因為產生醇的量比HO少,
集寧PVPK30批發該方法雖然工藝并不復雜,但需高壓設備,不適于大規模及連續生產,因此人們又將研究目標轉移到氣相法連續催化反應合成2-吡咯烷酮上.y-Al,O作為y-丁內酯與NH氣相法胺化反應催化劑,在350℃反應條件下得到的2-吡咯烷酮收率較低,僅15%.后來有專利報道采用硅鋁化合物,如蒙脫石、NaX分子篩為催化劑,效果良好.其中以人工合成的Y型沸石具應用前景.y-丁內酯分子中的券基被沸石分子篩中骨架陽離子周圍的強靜電場極化成(Ⅰ),